
In,. J. Hccu _MUSS Transfer. Vol. 33. No. 8. pp. 171 l-1720. I!)90 
Printed in Great Britain 

0017-9310/90s3.00+0.00 
Q 1990 Pcrgamon Pmr plc 

Heat transfer in developing 
magnetohydrodynamic Poiseuille flow and 

variable transport properties 
ALIREZA SETAYESHt 

Mechanical Engineering Department, Tuskegee University, Tuskegee, AL 36088, U.S.A. 

and 

VIRESHWAR SAHAI 

Mechanical Engineering Department, Tennessee Technological University, Cookeville, TN 38505, U.S.A. 

(Receiced 1.5 March 1989 and in Jinal form 20 October 1989) 

Abstract-A study is made of the effect of temperature-dependent transport properties on the developing 
magnetohydrodynamic flow and heat transfer in a parallel-plate channel whose walls are held at constant 
and equal temperatures. The flow is assumed to be steady, laminar, and incompressible. Representative 
numerical results are presented to show that the variation of properties may, under certain circumstances, 

have a significant influence on the development of both velocity and temperature profiles. 

INTRODUCTION 

THE STUDY of magnetohydrodynamic (MHD) flow 
and heat transfer has important applications in such 
devices as MHD generators. The flow in an MHD 
generator channel is seldom fully developed over its 
entire length, and large heat fluxes occur at the 
entrance regions of these devices. In addition, because 
the generator usually operates at high temperatures, 
the flow transport properties are strong functions of 
temperature. This temperature dependence is likely to 
affect the flow and heat transfer characteristics of the 
generator channel significantly. The objective of the 
present investigation is to study the effect of tem- 
perature-dependent transport properties on the vel- 
ocity and temperature profiles in the entrance region 
of a parallel-plate channel whose walls are held at 
constant and equal temperatures. This developing 
MHD Poiseuille flow is assumed to be incompressible, 
steady, and laminar. 

In a pioneering paper, Rosa [I] has discussed the 
effect of variable transport properties in MHD channel 
flow from both the experimental and theoretical 
points of view. The studies by Thompson and Bopp 
[2], Heywood [31, Filippov [4], and Setayeshpour [5] 
of fully developed MHD channel flows, which include 
both the Poiseuille and Couette flow configurations, 
have shown that deviations from constant transport 
properties have a significant effect on the heat transfer 
characteristics of the channel. 

The problem of developing MHD flow and heat 

t Present address: Radex, Inc., Three Preston Court, 
Bedford. MA 01730, U.S.A. 

transfer has been the subject of many investigations. 
Most of these studies, however, assume constant 
transport properties for the fluid. The constant-prop- 
erty developing MHD flow has been investigated both 
by approximate integral analyses (refs. [6-g], for 
example) and by finite difference methods such as 
those used by Hwang [lo] and Shohet [ll]. In the 
non-MHD case, the effect of variable viscosity on 
developing Bow and heat transfer has been extensively 
investigated ; the work of McKillop et al. [ 121 is typical 
of such studies. 

General power-law relationships have been used in 
this study to describe the transport properties of the 
fluid. The properties of many fluids of interest can 
be accurately represented by such relationships. 
However, no specific fluid has been kept in mind in 
the present parametric study. Instead, the emphasis is 
on determining the effect of variation of the exponents 
in the power-law relationships on the flow and heat 
transfer characteristics of the channel. The study of 
developing magnetohydrodynamic flow, which takes 
the variation of properties with temperature into 
account, has been the subject of only a few recent 
investigations. For example, Lohrasbi [I31 has con- 
sidered the variation of transport properties with tem- 
perature in a one-dimensional, two-phase MHD flow. 
Mittal et nf. [ 141 have studied the developing flow and 
heat transfer in an electrode wall channel of two 
pIasmas with variable transport properties. It is not 
possible, however, to compare their results with the 
present study because of the differences in boundary 
conditions. Setayeshpour and Sahai [15] have dis- 
cussed the effect of temperature-dependent transport 
properties in the entrance region of an MHD channel 
flow. They used a generalized type of temperature 
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NOMENCLATURE 

applied magnetic field R, electric field parameter 
specific heat at constant pressure T temperature of the fluid 
width of channel T, bulk temperature 
equivalent diameter, 2L u average velocity 
Eckert number u, 1 velocity components. 
electric field 
Graetz number Greek symbols 
heat transfer coefficient 
total current across the channel ;I 

viscosity exponent 
electrical conductivity exponent 

current density .1 thermal conductivity exponent 
thermal conductivity ;I temperature ratio appearing in power- 
height of the channel law relationships 
Hartmann number !l variable viscosity of the fluid 
effective Hartmann number P density of the fluid 
number of steps in the mesh network Cr variable electrical conductivity of the 
Nusselt number fluid. 
pressure 
Prandtl number Subscripts 
total heat flux from entry to an arbitrary e entrance condition 
location in the x-direction of the m average condition 
channel w wall (plate) condition. 

boundary condition, in which the wall heat flux is 
assumed to be a linear function of local wall tem- 
perature. 

It should also be noted that several general purpose 
codes have been developed to analytically model a 
wide variety of MHD generation devices in a realistic 
manner. Demetriades er al. [ 161 present an excellent 
survey of the capabilities of these codes, some of which 
include variable property effects. The purpose of the 
present study, however, is not to model a specific 
situation or a device but to investigate the effect of 
variation of properties in an idealized, simple 
situation. Since, as far as the authors are aware, no 
experimental results are available for the variable 
property case for the problem considered here, the 
results presented here do not pertain to a specific 
fluid. 

Finally, it is worth pointing out that the present 
study has important applications in areas other than 
MHD power generation. Entry length effects are also 
important, for example in liquid metal fusion blankets 

v71. 

GOVERNING EQUATIONS 

The geometry of the MHD parallel-plate channel 
is shown in Fig. 1. The height of the channel is L and 
is taken to be much smaller than the width of the 
channel d. The velocity and temperature profiles 
develop toward the direction of increasing X, and the 
external magnetic fields are applied in the positive I’- 
direction. The two parallel plates are considered to 
be electrically insulated. Two electrically conducting 

plates are assumed to be placed in planes parallel to 
the X--Y plane at distances of 1/2d and - 1/2d from the 
origin. These plates enclose the outside of the channel 
if d is sufficiently large, they will not affect the velocity 
and temperature profile development in the middle 
portion of the channel, as was illustrated by Hughes 
and Young [18]. 

A number of assumptions have been made in order 
to simplify the problem and to be consistent with 
the physical geometry of the problem. The flow is 
considered to be laminar and steady, and there are no 
applied (external) magnetic fields other than the one 
in the y-direction. None of the quantities are allowed 
to vary in the -_-direction. The induced magnetic field 
is considered to be small, and the Hall and ion-slip 
effects are assumed to be negligible. The velocity and 
temperature gradients of the x component of momen- 
tum and energy equations respectively taken in the J- 

FIG. I. Geometry of the parallel-plate channel. 
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direction dominate all other velocity and temperature 
gradients. Any externally imposed electrical fields are 
assumed to act in the z-direction only. 

From the preceding assumptions, it is possible to 
make boundary layer-type approximations for 
analyzing developing flow and, therefore, the govern- 
ing equations of MHD channel flow under con- 
sideration can be stated as follows : 

!!E+d”=() 
ax ay 

+o(EZ+UB,)2. (3) 

Here u and v are the velocity components, p the 
pressure, E, the electric field and B,, the applied mag- 
netic field. The density p and specific heat C, are 
assumed to be constant. The equations are written in 
a form which permits the possible variation of the 
electrical conductivity CT, viscosity p and thermal con- 
ductivity k as functions of temperature. In addition to 
the standard boundary layer assumptions, the above 
equations implicitly assume that the induced magnetic 
field is small and Hall and ion-slip effects are neg 
ligible. 

In the temperature range in which an MHD gener- 
ator operates, the viscosity and electrical and thermal 
conductivities may be strong functions of tempera- 
ture. In the present study, the following power-law 
relationships are assumed for viscosity and electrical 
and thermal conductivities : 

T’ 
p=uV r 

0 
(4) 

W 

k=k, f’ 0 w 

(5) 

(6) 

where T, is the wall temperature, and the quantities 
A, u,, and k, represent, respectively, the value of the 
viscosity, electrical conductivity, and thermal con- 
ductivity at the wall. It should be noted that the above 
power-law relationships have been suggested by 
numerous authors, for example refs. [l-4, 191 for 
MHD flows. 

The governing equations can be non-dimension- 
alized using the following set of dimensionless vari- 
ables and parameters based upon the characteristic 
width of the channel L, mean velocity U and wall 
temperature T, : 

X*=q_ 
L pU’ y 

v. Lpv =-----, 
Pw 

p’+ n*+, k’=; 
w 

112 
P 

* _P-PO T+ T-T, 
pU2 ’ _T,-T,’ 

or+, R,=&, Ek=ct;;T). 
PC w 

Here, IV, Pr, and Ek are respectively the Hartmann, 
Prandtl, and Eckert numbers, and RE the electric load- 
ing parameter. T, is the temperature of the wall. Then 
equations (l)-(3), in their non-dimensional forms, 
can now be written as 

,T 

D”+t’=o 
ax ay (7) 

-aM*(R,+u) 

(8) 

+EkaM2(&+u)2 (9) 

where, for convenience, the asterisks have been 
dropped with the understanding that all quantities are 
now non-dimensional. The power-law relationships 
of equations (4)-(c) acquire the following non-dimen- 
sional form : 

where 

p = (I +0T)’ 

CT = (1 +0T)8 jl> 0 

k=(l+N’)Y ~20 

(10) 

(11) 

(12) 

f+_l. 
W 

The above equations must be solved subject to 
appropriate initial and boundary conditions. It will 
be assumed here that at the entrance of the channel 
both velocity and temperature are uniform. These 
initial conditions can be stated in the following non- 
dimensional form : 

at x=0, for -+<y<:, u=I, c=O, 

T= 1, and p = 0. (13) 

The no-slip boundary conditions apply at channel 
walls for velocity. The temperature at the walls is 
taken to be constant and equal to T,. The non-dimen- 
sional forms of these conditions can be written as 
follows : 

for x20, at y=fi, u=O, v=O, T=O. 

(14) 
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The Hartmann number M is based upon viscosity 

I 

L,2 

and electrical conductivity values at the wall tem- Tb = uTd1 (22) 

perature. When these properties are taken to be tem- 
-,? 

perature-dependent, the effective Hartmann number where 
can often be very different from its reference value. 
Thus, knowing the actual Hartmann number M in the 
channel can be helpful in explaining some of the 

u d_v = I. (23) 

results in this work. 
The actual Hartmann number at a given location 

The average Nusselt number, in its usual form, is 

in the channel can be defined as follows : 
given by 

For a rectangular channel with height L, the equi- 

Here the viscosity ir and electrical conductivity u are valent diameter D, is equal to 2L. The average heat 

the dimensional variables. Thus, equation (I 5) in non- transfer coefficient h, for a length I of channel (and 

dimensional variables can be written as unit width) in which there is heat transfer at both 
walls is given by I \. . 

e Q h,=-=- 
AAT (‘x)(AT) 

(25) 

where parameters c and ;L are given by equations (5) where Q is the total heat flux from the entry to .r and 
and (4), respectively. is defined as 

The total current per unit of channel length is given 

by Q = 3 .I--k !$ wB,, d.u. 
s 0 

(26) 
fl ?L 

0 

(I’) The temperature difference, AT, is defined by 

The current density J, in the above equation is given 
AT= (T,--T,)-(T,,,--T,) 

T,-T, . 
(27) 

by Ohm’s law as follows : In ___ 
T,,..x - 7-w 

J: = a(E:+uB,,). (18) Since the thermal conductivity is assumed to be a 

The total current in dimensionless form can now be function of temperature, a mean thermal conductivity 

written as k, has been defined as follows : 

(28) 

Here k, is the thermal conductivity at entrance tem- 
Note that for the open circuit case (1, = 0). the value perature and k,,, is the mean thermal conductivity at 
of RE becomes a function of variable electrical con- a given location of X, which in non-dimensional form 
ductivity u and can be determined from the above can be defined as 
equation as follows : 

km,, = (1 +OT,,,)‘. (29) 

ai1 d_t Therefore, the mean Nusselt number in non-dimen- 

R,= - (20) 
sional quantities can now be stated as 

s 

I,? 
e d_i 

-I 3 ds 

There are some additional parameters which have 
Nu, = 

(1+0)7+(l+BT,,): 
(30) 

been used in this work which need to be defined; for 
example, the bulk temperature is calculated by 

where AT is given by the following equation : 

T, = 
I 

T,..x - 1 
1’21. 

rtTd_v 
AT=In. (31) 

b.r 
- ,121. _ 

c 
I’?,. (21) The average Nusselt number will be plotted versus 

II di the Graetz number which is defined as 
J-I 21. . 

which, in non-dimensional form. becomes 

R, Pr 

===o 
(32) 
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where &, is the equivalent Reynolds number, which 
is defined as 

R _2PUL 
L --. (33) 

Ku 

In terms of the dimensionless quantities defined 
earlier, Gz can be expressed as follows : 

Gz = ; Pr. 

METHOD OF SOLUTION 

The coupled governing equations of continuity, 
momentum, and energy (equations (7)-(g)) for devel- 
oping flow and heat transfer are solved subject to the 
initial conditions (13) and boundary conditions (14). 
Additional coupling and non-linearities are intro- 
duced by the assumption of variable properties. The 
coupled, non-linear governing equations are solved in 
the present investigation by a i-mite difference march- 
ing procedure developed by Patankar and Spalding 

POl* 
To implement this implicit scheme, the x and y 

derivatives are approximated by forward and central 
differences, respectively. After the non-linear terms 
have been suitably linearized in the finite difference 
form, this procedure leads to a set of tridiagonal equa- 
tions which can be solved by an efficient successive- 
substitution scheme. It should be noted that the pro- 
cedure used here is the one for confined flows. The 
pressure is not directly specified for confined flow and 
must be determined at every step as a part of the 
marching procedure. 

The iteration process needed to handle the tem- 
perature-dependent properties proceeds as follows. 
As the solution is marched in the axial direction (x 
axis), the current values of transport properties are 
calculated using the computed temperature dis- 
tribution from the previous .Y station. At the same 
time, the inertia terms of the momentum and energy 
equations are linearized by substituting the previous 
values of velocity components u and u in those terms 
for the current x station. The current values of the 
velocity and temperature distributions are then cal- 
culated by solving the momentum and energy equa- 
tions. The values of the transport properties are cal- 
culated again using these new values of velocity u and 
velocity u in the inertia terms of the momentum and 
energy equations. Iteration is then performed until the 
changes in u and u velocities are below a specified 
tolerance. 

A point should be made about the velocity and 
temperature singularities at the channel’s entrance. 
The initial condition for velocity requires that u = 1 
at the entrance ; however, at the edges of the two walls 
tl may have a value different from unity because of 
the no-slip boundary condition. Nevertheless, the con- 

dition in equation (23) must be satisfied at every section 
along the channel, including the one at the entrance. 

The discrepancy caused by the singula~ties cannot be 
disregarded because it introduces irregularities in the 
computed velocity distribution. A simple and effective 
way to overcome the und~irable effects of the singu- 
larities is to distribute them over all the grid points. 
Therefore, the following relationship can be for- 
mulated : 

at x=0 for -j<y<f, U-l+& 

(35) 

where N represents the number of steps in the numeri- 
cal solution. Any inaccuracies introduced by this 
assumption tend to diminish as N increases. 

RESULTS 

Employing the method described above, the 
governing equations of the problem can be solved for 
various values of the parameters 8, M, Pr, Ek, a, @, 
y, and RE. It is obviously not possible to consider 
here all possible combinations of these parameters. 
Therefore a major portion of the following discussion 
will concentrate on the effect of variation of a, fl, and 
y, the exponents in the power-law dependence of the 
transport properties on temperature. It must be. recog- 
nized, however, that the other parameters can have 
a strong influence on the temperature dist~bution 
and the coupling between the momentum and energy 
equations. The values of 8, M, Ek, and RE may there- 
fore have an important bearing on how the devel- 
opmental flow and heat transfer are affected by the 
variation of a, 8, and y [21]. 

The objective of the present paper is to discuss the 
effect of variable transport properties qualitatively, 
and the results presented here do not apply to any 
specific fluid or situation. Generally speaking, 
however, the viscosity of gases increases with tem- 
perature; therefore, the exponent a has a positive 
value. On the other hand, the viscosity of liquid 
decreases with temperature resulting in a negative 
value ofa. It should be noted that the values ofPrandt1 
number used in this work are 0.15 and 1.0. These 
values usually represent the Prandtl number of gases. 
However, since this work is not applicable to any 
specific fluid, for the purpose of comparison the same 
values of the Prandtl number have also been used for 
liquids. 

In the case of constant properties, the present com- 
putations are compared to those of Shohet [I I], Flegal 
[22], Hwang [lo], Chen and Chen [23], Sehlichting 
1241, Bodoia and Osterle [25], Roidt and Cess [26], 
and Manohar [27]. Table 1 shows a comparison of 
entrance or developmental lengths for velocity, using 
the criterion of 99% fully developed profiles, for 
different values of Hartmann number M. The values 
of entrance length at M = 50 and 100 are included to 
demonstrate the versatility of the present method. 
The corresponding results are not available in the 
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Table I. Comparison of entrance lengths for velocity 

M=O M=8 M = 20 M= 50 iM= 100 

Chen and Chen [23] - 0.01732 0.00205 - - 
Hwang [lo] 0.0422 0.0188 0.00304 - - 
Schlichting (241 0.0400 - - - - 
Bodoia and Osterle 1251 0.044 - - - 
Roidt and Cess [26] 0.0454 0.01670 - - - 

Manohar [27] 0.0439 0.02 0.00307 - - Present work 0.04465 0.02080 0.00300 0.000’1 0.00003 

literature. Figures 2 and 3 compare the work of Shohet 
[ 1 I] with the present investigation with respect to the 
velocity distribution in the channel for two cases 
(Hartmann number M = 4 and 18, respectively) of 
developing MHD flow. The two results are in good 
agreement and the figures clearly show the charac- 
teristic effect of increasing Hartmann number on vel- 
ocity. As M is increased, the velocity in the center 
portion of the channel (y = 0 represents the center- 
line) decreases. This is due to the overall retarding 
effect of the electromagnetic body force J x B (Lorentz 
force). The Hartmann number M represents the ratio 
of the Lorentz force to the viscous force in the fluid. 
The velocity near the walls increases somewhat in 
order to keep the mass flow rate constant. 

Figure 4 presents the comparison of the velocity 
profile of an experimental investigation done by Flegal 
[22] with the computational data of the present work. 
The experiment was performed in an MHD channel 
with ratio of d/L = 4, and the experimental fluid was 

FIG. 2. Develooment of velocitv orofile alone the channel 
for M =b.% 

FIG. 3. Development of velocity profile along the channel 
for M = 18.0. 

a potassium chloride solution. The test was conducted 
at room temperature; therefore, the variation of trans- 
port properties can be assumed to be negligible. Figure 
4 shows the velocity distributions at two locations for 
an MHD flow with a Hartmann number of 5.8. As can 
be observed from the above figure, the experimental 
results of Flegal [22] and the computational results of 
the present investigation are very close. 

Figure 5 shows the bulk temperature development 
along the channel for M = 20. In this figure the results 
of the present investigation are compared to the 
numerical results of Hwang [lo]. The curves are plot- 
ted for two values of electric field parameter, RE = 0 

(short circuit) and -0.5. Similarly, the variation of 
average Nusselt number in the axial direction is com- 
pared to the work of Hwang in Fig. 6. It should be 
noted that in this graph the Nusselt numbers are based 
on log mean temperatures as described in equations 
(30) and (31). The two cases of RE = 0 (short circuit) 
and Ek = 1.0, and RE = - 1.0 (open circuit) and 

FIG. 4. Development of velocity profile along the channel 
for M = 5.8. 

FIG. 5. Development of bulk temperature along the channel 
for !M = 20.0, Pr = 1.0, and Ek = 1.0. 
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FIG. 6. Variation of average Nusselt number vs log of Graetz 
number for M = 20.0 and Pr = 1.0. 

Ek = 0.1 are considered in the graph. The results pre- 
sented above show that the numerical method used to 
solve the problem gives accurate results for developing 
MHD flow with constant transport properties. Some 
results for developing MHD flow with temperature- 
dependent transport properties are presented next. 

Figures 7 and 8 show the development of axial 
velocity profiles in the channel for Hartmann number 
A4 = 20; the viscosity is assumed to vary with tem- 
perature, and the other properties are held constant 
to isolate the effect of viscosity variation. The results 
for the case in which all properties are constant are 
included in both figures for comparison purposes. In 
Fig. 7, for a = - 2.0 (negative exponent characterizes 
a liquid), the velocity is less in the central portion of 
the channel and larger near the plates (v = 0.4) when 

1.10 1 
” = 0.0. (I = 0.0 

,.I0 - 
* = 0.0. a = -2.0 

1.05 - 

u - 
1.00 - 7 I 0.1. Q E -2.0 

” I 0.4. m I 0.0 

0.00 - 

0.001 / I , , , , . , . 

0.00 0.0, 0.02 0.03 0.04 O.“S 

X 

FIG. 7. Development of axial velocity for M = 20.0, Rb = 
-0.5, Pr = 0.75, Ek = 0.1.0 = 1.0, /3 = 0.0, and y = 0.0. 

u 

0.00, , , , , . , , , , 
0.00 0.0, 0.02 0.03 0.01 s 

X 

7 

-I 

1 
-I 
D.00 

FIG. 8. Development of axial velocity for M = 20.0, RE = 
-0.5, Pr = 0.75. Ek = 0.1, 0 = 1.0, B = 0.0, and p = 0.0. 

-o.oo 41 
0.0 30.0 40.0 10.0 20.0 00.0 

M .n 

FIG. 9. Variation of effective Hartmann number across the 
channel for M = 20.0, R, = -0.5, Pr = 0.75, Ek = 0.1, 

tJ = 1.0, fi = 0.0, and y = 0.0. 

compared to the constant property case. In Fig. 8, in 
which z = 2.0, representing gas flow, the effect on 
velocity is opposite. These effects are contrary to what 
would be expected in ordinary flow (non-MHD flow). 
This phenomenon can be understood by observing the 
relative effect of the electromagnetic force (Lorentz 
force) and the viscous force on the velocity dis- 
tribution in a given situation. Since the Hartmann 
number represents the ratio of these two forces, it is 
interesting to investigate the variation of the effective 
Hartmann number along the channel. Figure 9 illus- 
trates the variation of the actual Hartmann number 
for two cases, r = 2.0 and -2.0, with conditions cor- 
responding to those in Figs. 7 and 8. It is seen that for 
negative or positive a the effective Hartmann number 
varies considerably across the channel. These changes 
occur because, as temperature increases, the viscous 
force increases or decreases depending upon the sign 
of a. For negative a, the large increase in the effective 
Hartmann number significantly retards the flow in the 
central portion of the channel. In the case of positive 
a, on the other hand, the reduced values of the actual 
Hartmann number result in a less effective Lorentz 
force, and flow is not decelerated in the middle portion 
of the channel. 

Figure 10 shows the effect of variable electrical con- 
ductivity on the velocity distribution across the chan- 
nel for different locations in the axial direction. The 
exponents a and y are taken to be zero. As Fig. 10 

FIG. 10. Development of velocity profile along the channel 
for M = 8.0, Rb = 0.0, Pr = 0.75, Ek = O.O,B = 1.0, I = 0.0, 

/3 = 5.0, and 7 = 0.0. 
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FIG. 1 I. Development of velocity profile along the channel 
for M= 8.0, RE= -0.8, Pr = 0.75, Ek = 0.2. 0 = 0.75, 

z=0.5,/3=5.0,andy= 1.0. 

shows, the flow becomes retarded in the central portion 
and accelerated near the walls. This produces an over- 

shoot velocity in the neighborhood of the walls and 
results in an M-shaped velocity profile. The cause 
of this pattern may be determined by examining the 
temperature distribution. Although the results are not 
presented here, the temperature is much higher in the 
central region as compared to that near the walls. This 
causes a large increase in the electrical conductivity Q 
in the core region of the channel. As a result, the 
Lorentz force, which is a retarding force, becomes 
stronger in the central portion than near the walls. It 
is interesting to see what happens to the overshoot 
velocity pattern as the flow develops along the 
channel, the velocity profile gradually loses its M- 
shape and assumes a characteristic parabolic shape. 
This is due to the fact that the temperature variation 
across the channel is minimized as the flow develops, 
resulting in a nearby uniform distribution of electrical 
conductivity 0. There is no heat generation due to the 
dissipative effect within the fluid because of the neglect 
of the viscous and Joulean terms (Ek = 0) in the 
energy equation ; as the heat is conducted away from 
the fluid, the fluid temperature gradually approaches 
the wall temperature. 

This phenomenon of M-shaped velocity profiles is 
not unfamiliar in MHD literature, as reported by 
Heywood [3], Thompson and Bopp [2], Oliver and 
Maxwell [28], and Branover [29]. It may be noted that 
the temperature-dependent electrical conductivity is 
not the only factor which can produce an overshoot 
velocity in the channel. Other factors resulting in a 
non-uniform Lorentz force distribution may also 
cause an M-shaped velocity distribution in the channel 
[2, 3, 28, 291. 

Figure 11 represents a case where the viscosity, elec- 
trical conductivity, and thermal conductivity are all 
assumed to vary with respect to temperature with 
values of 0.5, 5.0, and 1 .O assigned to exponents r, p, 
and y, respectively. As can be seen from Fig. 11, the 
velocity profile loses some of its M-shape while devel- 
oping; however, unlike in Fig. 10, it retains its M- 
shape even when almost fully developed. This differ- 
ence can be explained by noting that the viscous heat- 

3 

i 

0.0 1.0 2.0 3.0 4.0 5.0 

X 

FIG. 12. Development of bulk temperature along thechannel 
for M=20.0, R,= -0.5, Pr=l.O, Ek=O.l, t?= 1.0, 

r = 2.0, and /I = 1.0. 

ing and Joulean heating are not neglected in the pre- 
sent case, and the heat generation in the fluid due 
to these dissipative effects prevents the total loss of 
temperature to the surroundings. 

Although the thermal conductivity exponent was 
given a non-zero value in the last figure, the effect of 
the variation of 7 on flow development has not been 
studied thus far. Of course, the variation of 7 alone if 
c and jr are held constant cannot affect the velocity 
distribution because it does not appear in the momen- 
tum equation. The variation of thermal conductivity 
with temperature plays an important role in the flow 
development, however, if the viscosity and/or elec- 
trical conductivity are also varied. An increase in the 
thermal conductivity of the fluid due to an increase in 
‘J allows more of the heat generated by dissipation to 
be conducted away from the fluid. An interesting effect 
of the thermal conductivity variation on temperature 
can be seen in Fig. 12. where the viscosity and electrical 
conductivity are also allowed to vary. When exponent 
y = 0.0, the increased amount of heat generation due 
to non-zero and positive values of 2 and j? causes the 
temperature to rise sharply. With even relatively small 
values of 7. however, the temperature stabilizes 
quickly due to the increased ability of the fluid to 
conduct the heat away from it. 

Figure 13 compares the bulk temperature variation 
in an MHD flow with constant properties and with 
cases when the exponents x. b and ;: vary. When 

Tb 
I.0 

0.0 

FIG. 13. Development of bulk temperature along the channel 
forM= 20.0. R,= -0.5, Pr= 0.75, Ek=O.l.andO= 1.0. 
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FIG. 14. Variation ofaverage Nusselt number vs log of Graetz 
number for M = 20.0, R, = -0.5, Pr = 0.75, Ek = 0.1, and 

e = 1.0. 

u = 2.0 or -2.0, the bulk temperature remains either 
slightly above or slightly below the constant property 
values. However, in the case when electrical con- 
ductivity also varies with temperature (B = 2.0), there 
is a sharp increase in bulk temperature for z = 2.0 and 
-2.0, although for a = -2.0 the bulk temperature is 
slightly lower than that for the case when z = 2.0. 
Another situation observed in the figure is the effect 
of the variation of the thermal conductivity in com- 
bination with the variation of the other two proper- 
ties. Figure 13 shows that while the temperature 
increased without bounds for the cases of z = 2.0, 
/S = 2.0, and y = 0.0 and z = -2.0, /3 = 2.0, and 
y = 0.0, it stabilized to a fully developed state in both 
cases when y was given a non-zero value of 2.0. This 
suggests that the variation of thermal conductivity 
with temperature must be taken into account if the 
results are to make physical sense. 

Figure 14 is similar to Fig. 13, except that this figure 
shows the variation of average Nusselt numbers. As 
can be seen from Fig. 14, for any given values of p 
and 7, the variation of c1 from 2.0 to -2.0 does not 
cause much change in the Nusselt number values. 
However, for b = 2.0 there is an increase in the Nus- 
selt number, and significantly there is a decrease in 
Nusselt number when y, with a value of 2.0, is added 
to the problem. 

SUMMARY AND CONCLUSIONS 

The steady-state magnetohydrodynamic devel- 
oping flow of an incompressible and viscous fluid 
between parahel electrically insulated plates main- 
tained at constant and equal temperature has been 
investigated. The viscosity, electrical conductivity, 
and thermal conductivity of the fluid were assumed 
to be power-law functions of temperature. At the 
entrance of the channel, both velocity and tem- 
perature were assumed to be uniform, and the two 
were allowed to develop simultaneously. The govern- 
ing equations, subject to the appropriate initial and 
boundary conditions, were solved by an efficient finite 
difference marching procedure which was found to be 
accurate and stable for a wide range of values of the 

parameters. A major portion of the results presented 
in this paper concentrated on the velocity, tempera- 
ture, and heat transfer characteristics of the channel. 
However, the results for the variation of other par- 
ameters involved in the problem were also presented 
whenever their effects on velocity and temperature 
development were found to be significant. A more 
detailed set of results may be found in the first author’s 
dissertation [21]. 
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TRANSFERT THERMIQUE DANS UN ECOULEMENT MAGNETOHYDRODYNAMIQUE 
DE POISEUILLE AVEC PROPRIETES DE TRANSPORT VARIABLES 

Rbumi-On etudie I’effet de la variation avec la temperature des proprietes de transport sur le devel- 
oppement d’un ecoulement magnetodynamique et sur le transfert thermique dans un canal a plans paralleies 
maintenus I des temperatures ega!es et uniformes. L’ecoulement est suppose itre permanent, laminaire et 
incompressible. Des resultats numeriques representatifs sont donnis pour montrer que la variation des 
proprietes, dam certaines conditions, peut avoir une influence sensible sur le dtveloppement des prohls de 

vitesse et de temperature. 

WARMEtiBERGANG IM ANLAUFGEBEIT EINER MAGNETOHYDRODYNAMISCHEN 
POISEUILLE-STROMUNG MIT VARIABLEN TRANSPORTEIGENSCHAFTEN 

Zusammenfassung-Der EinfluD der temperaturabhlngigen Eigenschaften auf eine sich entwickelnde 
magnetohydrodynamische Striimung und den Wirmeiibergang in einem Kanal aus parallelen Platten von 
gleicher und konstanter Temperatur wird untersucht. Die Striimung wird dabei als station&, laminar und 
inkompressibel angenommen. Typische numerische Ergebnisse werden dargestellt ; dabei zeigt sich. da8 
die Verinderung der Eigenschaften unter bestimmten Bedingungen einen spiirbaren Einfluf.3 auf die 

Entwicklung von Geschwindigkeits- und Temperaturprofilen hat. 

TEl-UlOl-IEPEHOC llPM PA3BMBAlOIIJEMCII MAFHHTOI-HAPOAHHAMHYECKOM 
TE’JEHMM l-IYA3EflJIJl C M3MEHRIOIlJMMMCI CBO#kXBAMM TEnJIOl-IEPEHOCA 

Annowwn-HccnenyeTcn nnwnuie 3amicnmxx OT rehtneparypbt tco3#niusieriroa neperroca Ha pa3se- 
rrie twarrirrrorrfnpomimar.fri~ecrecroro Teqerirrn H renxonepeeoc B n.nocxonapannerrbrioM xarrane, Ha 
cremtax ~o~oporo nossepxoiearorcn nocronmrbte H paeribre TeMneparypkr. Hpemronaraffcn, STO 
rexemie nannercn ycrokqaebthc, nar+imfapttbtM H xcxm.iaehtbw. IIpti~onnrcx xapatrrepirbre xricnemibte 
peoynbram, roropbte nowa3kmator, 9To x%bfertemre xaparrrepricrrfr nepermca B 0npenenemtbt.X ycno- 

BHIIX MOxteT OKa3bIBaTL cyluecrSeHH0e BJtHIlHHe Ha pa3BHTHe np0@fJtefi CKOp0mefi H TeMnepaTyp. 


